
C++ Toolkit Book The Object Manager

17-1

17. The Object Manager
Created: April 1, 2003
Updated: September 08, 2004

Summary
The Object Manager [Library xobjmgr: include | src]

The Object Manager is a library, working in conjunction with the serializable object classes (see
above) to facilitate access to biological sequence data. The Object Manager has been designed to
coordinate the use of these objects, particularly the management of the details of loading data from
one or more potentially heterogeneous data sources. The goal is to present a consistent, flexible
interface to users that minimizes their exposure to the details of interacting with biological
databases and their underlying data structures.

Most of the major classes in this library have a short definition in addition to the descriptions and
links below. Handles are the primary mechanism through which users access data; details of the
retrieval are managed transparently by the Object Manager.

See the usage page to begin working with the Object Manager. An example and sample project
have been created to further assist new users and serve as a template for new projects. We have
also compiled a list of common problems encountered when using the Object Manager.

Object Manager [include/objmgr | src/objmgr]

i. Top-Level Object Manager Classes

• CObjectManager Class: Manage Serializable Data Objects object_manager[.hpp | .
cpp]

• Scope Definition for Bio-Sequence Data scope[.hpp | .cpp]

• Data loader Base Class data_loader[.hpp | .cpp]

ii. Handles

• Seq_id Handle (now located outside of the Object Manager) seq_id_handle[.hpp | .
cpp]

• Bioseq handle bioseq_handle[.hpp | .cpp]

• Bioseq-set handle bioseq_set_handle[.hpp | .cpp]

• Seq-entry handle seq_entry_handle[.hpp | .cpp]

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/object_manager.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/object_manager.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/object_manager.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/scope.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/scope.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/data_loader.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/data_loader.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seq/seq_id_handle.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seq/seq_id_handle.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seq/seq_id_handle.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/bioseq_handle.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/bioseq_handle.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/bioseq_set_handle.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/bioseq_set_handle.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_entry_handle.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_entry_handle.cpp

C++ Toolkit Book The Object Manager

17-2

• Seq-annot handle seq_annot_handle[.hpp | .cpp]

• Seq-feat handle seq_feat_handle[.hpp | .cpp]

• Seq-align handle seq_align_handle[.hpp | .cpp]

• Seq-graph handle seq_graph_handle[.hpp | .cpp]

iii. Accessing Sequence Data

• Sequence Map seq_map[.hpp | .cpp]

• Representation of/Random Access to the Letters of a Bioseq seq_vector[.hpp | .cpp]

iv. Iterators

• Tree structure iterators

• Bioseq iterator bioseq_ci[.hpp | .cpp]

• Seq-entry iterator seq_entry_ci[.hpp | .cpp]

• Descriptor iterators

• Seq-descr iterator seq_descr_ci[.hpp | .cpp]

• Seqdesc iterator seqdesc_ci[.hpp | .cpp]

• Annotation iterators

• Seq-annot iterator seq_annot_ci[.hpp | .cpp]

• Annotation iterator annot_ci[.hpp | .cpp]

• Feature iterator feat_ci[.hpp | .cpp]

• Alignment iterator align_ci[.hpp | .cpp]

• Graph iterator graph_ci[.hpp | .cpp]

• Seq-map iterator seq_map_ci[.hpp | .cpp]

• Seq-vector iterator seq_vector_ci[.hpp | .cpp]

Demo Cases

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_annot_handle.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_annot_handle.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_feat_handle.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_feat_handle.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_align_handle.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_align_handle.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_graph_handle.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_graph_handle.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_map.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_map.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_vector.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_vector.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/bioseq_ci.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/bioseq_ci.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_entry_ci.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_entry_ci.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_descr_ci.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_descr_ci.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seqdesc_ci.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seqdesc_ci.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_annot_ci.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_annot_ci.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/annot_ci.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/annot_ci.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/feat_ci.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/feat_ci.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/align_ci.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/align_ci.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/graph_ci.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/graph_ci.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_map_ci.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_map_ci.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_vector_ci.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_vector_ci.cpp

C++ Toolkit Book The Object Manager

17-3

• Simple Object Manager usage example [src/app/sample/objmgr/objmgr_sample.cpp]

• More complicated demo application [src/app/objmgr/demo/objmgr_demo.cpp]

Test Cases [src/objmgr/test]
Object Manager Utilities [include/objmgr/util | src/objmgr/util]

Chapter Outline
The following is an outline of the topics presented in this chapter:

• Preface

• Requirements

• Use cases

• Classes

• Definition

• Attributes and operations

• Request history and conflict resolution

• Usage

• How to use it

• Generic code example

• Educational exercises

• Framework setup

• Tasks description

• Common problems

Preface
Molecular biology is generating a vast multitude of data referring to our understanding of the pro-
cesses which underlie all living things. This data is being accumulated and analyzed in thousands
of laboratories all over the world. Its raw volume is growing at an astonishing rate.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/sample/objmgr/objmgr_sample.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/objmgr/demo/objmgr_demo.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/test
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/util
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/util
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/app/sample/objmgr/objmgr_sample.cpp

C++ Toolkit Book The Object Manager

17-4

In these circumstances the problem of storing, searching, retrieving and exchanging molecu-
lar biology data cannot be underestimated. NCBI maintains several databases for storing biomed-
ical information. While the amount of information stored in these databases grows at an exponen-
tial rate, it becomes more and more important to optimize, improve the data retrieval software
tools. Object Manager is one of such tools specifically designed to facilitate data retrieval.

The NCBI databases and software tools are designed around a particular model of biological
sequence data. The nature of this data is not yet fully understood, its fundamental properties and
relationships are constantly being revised. So, the data model must be very flexible. NCBI uses
Abstract Syntax Notation One (ASN.1) as a formal language to describe biological sequence data
and its associated information.

Requirements
Client must be able to analyze biological sequence data, which come from multiple heteroge-
neous data sources. As for "standard" databases, we mean only NCBI GenBank. "Nonstandard"
data source may include but are not limited to reading data from file or constructing bio sequence
"manually".

The purpose of biologist could be to investigate different combinations of data pieces. The
system should provide for transparent merge of different pieces of data, as well as various com-
binations of it. Important thing to note is that such combinations may be incorrect or ambiguous. It
is one of the possible goals of client to discover such ambiguity.

The bio sequence data may be huge. Querying this vast amount of data from a remote
database may impose severe requirements on communication lines and computer resources –
both client and server. The system should provide for partial data acquisition. In other words, the
system should only transmit data that is really needed, not all of it at once. At the same time this
technology should not impose additional (or too much) restrictions on a client system. The pro-
cess, from a client point of view, should be as transparent as possible. When and if client needs
more information, it should be retrieved "automatically".

Different biological sequences can refer to each other. One example of such reference may
be in the form "the sequence of amino acids here is the same as sequence of amino acids
there" (what is the meaning of here and there is a separate question). The data retrieval system
should be able to resolve such references automatically answering what amino acids (or nucleic
acids) are actually here. At the same time, at client request, such automatic resolution may be
turned off. Probably, the client's purpose is to investigate such references.

Biological sequences are identified by Seq-id, which may have different forms. Information
about specific sequence stored in the database can be modified at any time. Sometimes, if
changes are minor, this only results in creating a new submission of existing bio sequence and
assigning a new revision number to it. In case of more substantial changes new version number
can be assigned. The data change, still, from client point of view the system should provide con-
sistency. Possible scenarios include:

http://www.ncbi.nlm.nih.gov/
http://asn1.elibel.tm.fr/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/INDEX.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/INDEX.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQLOC.HTML

C++ Toolkit Book The Object Manager

17-5

• Database changes during client's session. Client starts working and retrieves some data
from the database, the data in database then change. When client then asks for an addi-
tional data, the system should retrieve original bio sequence submission data, not the most
recent one.

• Database changes between client's sessions. Client retrieves some data and ends work
session. Next time the most recent submission data is retrieved, unless the client asks for
a specific version number.

The system must support multithreading. It should be possible to work with bio sequence
data from multiple threads.

Use cases
Biological sequence data and its associated information are described in NCBI data model using
Abstract Syntax Notation One (ASN.1). There is a tool which, based on this specifications, gener-
ates corresponding data objects. Object Manager manipulates these objects, so they are refer-
enced in this document without further explanations.

The most general container object of bio sequence data, as defined in NCBI data model, is
Seq-entry. In general, Seq-entry is defined recursively as a tree of Seq-entries (one entry refers
to another one etc), where each node contains either Bioseq or list of other Seq-entries plus
some additional data like sequence description, sequence annotations etc. Naturally, in any such
tree there is only one top-level Seq-entry (TSE).

Client must be able to define a scope of visibility and reference resolution. Such scope is
defined by the sources of data – the system uses only "allowed" sources to look for data. Such
scopes may, for instance, contain several variants of the same bio sequence (Seq-entry). Since
sequences refer to each other, the scopes practically always intersect. In this case changing
some data in one scope should be somehow reflected in all other scopes, which "look" at the
same data – there is a need in some sort of communication between scopes.

A scope may contain multiple top-level Seq-entries and multiple sources of data.
Once a scope is created, a client should be able to

• Add externally created top-level Seq-entry to it;

• Add data loader to it. Data loader is a link between out-of-process source of bio sequence
data and the scope; it loads data when and if necessary;

• Edit objects retrieved from the scope. Data fetched from external sources through loaders
can not be modified directly. Instead of this an object may be detached from its original
source and the new copy provided for editing. Editing includes:moving existing data from
one object to another;adding new data to an object;removing data from an object.

Once the scope is populated with data, a client should be able to

http://asn1.elibel.tm.fr/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/tools/datatool/datatool.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQSET.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML

C++ Toolkit Book The Object Manager

17-6

• Find Bioseq with a given Seq_id, loading the Seq-entry if necessary;

• Find top-level Seq-entry for a sequence with a given Seq_id;

• Retrieve general information about the sequence (type, length etc., without fetching
sequence data) by Seq_id;

• Obtain sequence data – actual sequence data (by Seq_id) in a specified encoding;

• Enumerate sequence descriptions and sequence annotation data, namely: features,
graphs and alignments. The annotation iterators may be fine-tuned to restrict annotation
types, locations, depth of search etc.

Multithreading. There are two scenarios one may think of:

• Several threads work with the same scope simultaneously. The scope is given to them
from the outside, so this external controller is responsible for waiting for thread termination
and deleting the scope.

• Different threads create their own scopes to work with the same data source. That is, the
data source is shared resource.

Classes

Definition
Here we define Object Manager's key classes and their behavior:

• Object manager

• Scope

• Data loader

• Data source

• Handles

• Seq-map

• Seq-vector

• Iterators

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQLOC.HTML

C++ Toolkit Book The Object Manager

17-7

Object manager
Object manager manages data objects, provides them to Scopes when needed. It knows all exist-
ing Data sources and Data loaders. When a Scope needs one, it receives a data object from the
Object Manager. This enables sharing and reusing of all relevant data between different Scopes.
Another function of the Object Manager is letting Scopes know each other, letting Scopes to
communicate. This is a barely visible entity.

Scope
Scope is a top-level object available to a client. Its purpose is to define a scope of visibility and
reference resolution and provide access to the bio sequence data.

Data loader
Data loader is a link between in-process data storage and remote, out-of process data source. Its
purpose is to communicate with a remote data source, receive data from there, understand what
is already received and what is missing, and pass data to the local storage (Data source). Data
loader maintains its own index of what data is loaded already and references that data in the Data
source.

Data source
Data source stores bio sequence data locally. Scope communicates with this object to obtain any
sequence data. Data source creates and maintains internal indices to facilitate information
search. Data source may contain data of several top-level Seq-entries. In case client pushes an
externally constructed Seq-entry object in the Scope, such object is stored in a separate Data
source. In this case, Data source has only one top-level Seq-entry. From the other side, when
Data source is linked to a Data loader, it will contain all top-level Seq-entries retrieved by that
loader.

Handles
Most objects received from the Object Manager are accessed through handles. One of the most
important of them is Bioseq handle, a proxy for CBioseq. Its purpose is to facilitate access to
Bioseq data. When client wants to access particular biological sequence, it requests a Bioseq
handle from the Scope. Another important class is Seq-id handle which is used in many places to
optimize data indexing. Other handles used in the Object Manager are:

• Bioseq-set handle

• Seq-entry handle

• Seq-annot handle

• Seq-feat handle

• Seq-align handle

• Seq-graph handle

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQSET.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML

C++ Toolkit Book The Object Manager

17-8

Most handles have two versions: simple read-only handle and edit handle, which may be used to
modify the data.

Seq-map
Seq-map contains a general information about the sequence structure: location of data, refer-
ences gaps etc.

Seq-vector
Seq-vector provides sequence data in the selected coding.

Iterators
Many objects in the Object Manager can be enumerated using iterators. Some of the iterators
behave like usual container iterators (e.g. Seq-vector iterator), others have more complicated
behavior depending on different arguments and flags.

Description iterators traverse bio sequence descriptions (Seq-descr and Seqdesc) in the
Seq-entry. They start with the description(s) of the requested Bioseq or Seq-entry and then
retrieve all descriptions iterating through the tree nodes up to the top-level Seq-entry. Starting
Bioseq is defined by a Bioseq handle. Descriptions do not contain information about what Bioseq
they describe, so the only way to figure it out is by description location on the tree.

Annotation iterators are utility classes for traversing sequence annotation data. Each anno-
tation contains a reference to one or more regions on one or more sequences (Bioseq). From one
point of view this is good, because we can always say which sequences are related to the given
annotation. On the other hand, this creates many problems, since an annotation referencing a
sequence may be stored in another sequence/Seq-entry/tree. The annotation iterators attempt to
find all objects related to the given location in all Data sources from the current Scope. Data
sources create indexes for all annotations by their locations. Another useful feature of the annota-
tion iterators is location mapping: for segmented sequences the iterators can collect annotations
defined on segments and adjust their locations to point to the master sequence.

There are several annotation iterator classes, some specialized for particular annotation
types:

• Seq-annot iterator – traverses Seq-annot objects starting from a given Seq-entry/Bioseq
up to the top-level Seq-entry (The same way as Descriptor iterators do) or down to each
leaf seq-entry. (Seq-annot);

• Annot iterator –traverses Seq-annot objects (Seq-annot) rather than individual annotations;

• Feature iterator – traverses sequence features (Seq-feat);

• Alignment iterator – traverses sequence alignments descriptions (Seq-align).

• Graph iterator – traverses sequence graphs (Seq-graph);

Tree iterators include Bioseq iterator and Seq-entry iterator, which may be used to visit leafs
and nodes of a Seq-entry tree.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQFEAT.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQALIGN.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQRES.HTML

C++ Toolkit Book The Object Manager

17-9

Seq-map iterator iterates over parts of a bioseq. It is used mostly with segmented
sequences to enumerate their segments and check their type without fetching complete
sequence data.

Seq-vector iterator is used to access individual sequence characters in a selected coding.

Attributes and Operations

• Object manager

• Scope

• Data loader

• Handles:

• Bioseq handle

• Bioseq-set handle

• Seq-entry handle

• Seq-annot handle

• Seq-feat handle

• Seq-align handle

• Seq-graph handle

• Seq-map

• Seq-vector

• Iterators:

• Bioseq iterator

• Seq-entry iterator

• Seq-descr iterator

• Seqdesc iterator

• Seq-annot iterator

• Annot iterator

C++ Toolkit Book The Object Manager

17-10

• Feature iterator

• Alignment iterator

• Graph iterator

• Seq-map iterator

• Seq-vector iterator

Object manager
Before being able to use any Scopes, a client must create and initialize Object Manager (COb-
jectManager). Initialization functions include registration of Data loaders, some of which may be
declared as default ones. All default Data loaders are added to a Scope when the latter asks for
them. All Data loaders are named, so Scopes may refer to them by name. Another kind of data
object is CSeq_entry - it does not require any data loader, but also may be registered with the
Object Manager. Seq-entry may not be a default data object.

CObjectManager is a singleton, which means at any moment you may have only one
instance of the class using static method CObjectManager::GetInstance(void). The method
returns CRef<CObjectManager> and this CRef<> should not be released until you finish using
the Object Manager. Otherwise the Object Manager may be deleted and next call to GetInstance
will return a new object.

Most other CObjectManager methods are used to manage Data loaders.

Object methods

• static CRef<CObjectManager> GetInstance(void) - returns the existing
object manager or creates one. The returned CRef should be kept alive
while the object manager is used.

• RegisterDataLoader - creates and registers data loader specified by
driver name using plugin manager.

• FindDataLoader - finds data loader by its name. Returns pointer to the
loader or null if no loader was found.

• GetRegisteredNames - fills vector of strings with the names of all regis-
tered data loaders.

• void SetLoaderOptions - allows to modify options (default flag and prior-
ity) of a registered data loader.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CObjectManager
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CObjectManager
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_entry

C++ Toolkit Book The Object Manager

17-11

• bool RevokeDataLoader - revokes a registered data loader by pointer or
name. Returns false if the loader is still in use. Throws exception if the
loader is not registered.

Scope
Scope (CScope) is designed to be a lightweight object, which could be easily created and
destroyed. Scope may even be created on the stack – as an automatic object. Scope is popu-
lated with data by adding data loaders or already created Seq-entries to it. Data loaders can only
be added by name, which means it must be registered with the Object Manager beforehand.
Once an externally created Seq-entry is added to a Scope, it should not be modified any more.

The main task of a scope is to cache resolved data references. Any resolved data chunk will
be locked by the scope through which it was fetched. For this reason retrieving a lot of unrelated
data through the same scope may consume a lot of memory. To clean scope's cache and release
the memory you can use ResetHistory or just destroy the scope and create a new one. When a
scope is destroyed or cleaned any handles retrieved from the scope become invalid.

Object methods

• AddDefaults - adds all loaders registered as default in the object man-
ager.

• AddDataLoader - adds a data loader to the scope using the loader's
name.

• AddScope - adds all loaders attached to another scope.

• AddTopLevelSeqEntry - adds a TSE to the scope. If the TSE has been
already added to some scope, the data and indices will be re-used.

• AddBioseq - adds a bioseq object wrapping it to a new Seq-entry.

• AddSeq_annot - adds a Seq-annot object to the scope.

• GetBioseqHandle - returns a bioseq handle for the requested bioseq.
There are several versions of this function accepting different arguments.
A bioseqs can be found by its seq-id, seq-id handle or seq-loc. There are
special flags which control data loading while resolving a bioseq (e.g. you
may want to check if a bioseq has been already loaded by any scope or
resolved in this particular scope).

• GetBioseqHandleFromTSE - allows to get a bioseq handle restricting
the search to a single top-level Seq-entry.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CScope

C++ Toolkit Book The Object Manager

17-12

• GetSynonyms - returns a set of synonyms for a given bioseq. Synonyms
returned by a scope may differ from the Seq-id set stored in Bioseq
object. The returned set includes all ids which are resolved to the bioseq
in this scope. An id may be hidden if it has been resolved to another
bioseq. Several modifications of the same id may appear as synonyms (e.
g. accession.version and accession-only may be synonyms).

• GetAllTSEs - fills a vector of Seq-entry handles with all resolved TSEs.

Data loader
The Data loader base class (CDataLoader) is almost never used by a client application directly.
The specific data loaders (like GenBank data loader) have several static methods which should
be used to register loaders in the Object Manager. Each of RegisterInObjectManager methods
constructs a loader name depending on the arguments, checks if a loader with this name is
already registered, creates and registers the loader if necessary. GetLoaderNameFromArgs
methods may be used to get a potential loader's name from a set of arguments. RegisterInOb-
jectManager returns a simple structure with two methods: IsCreated, indicating if the loader was
just created or a registered loader with the same name was found, and GetLoader, returning
pointer to the loader. The pointer may be null if the RegisterInObjectManager function fails or if
the type of the already registered loader can not be casted to the type requested.

Bioseq handle
When a client wants to access a bioseq data, it asks the Scope for a Bioseq handle
(CBioseq_Handle). The Bioseq handle is a proxy to access the bioseq data; it may be used to
iterate over annotations and descriptors related to the bioseq etc. Bioseq handle also takes care
of loading any necessary data when requested. E.g. to get a sequence of characters for a seg-
mented bioseq it will load all segments and put their data in the right places.

Most methods of CBioseq for checking and getting object mambers are mirrored in the
Bioseq handle's interface. Other methods are described below.

Object methods

• GetSeqId - returns seq-id which was used to obtain the handle or null (if
the handle was obtained in a way not requiring seq-id).

• GetSeq_id_Handle - returns seq-id handle corresponding to the id used
to obtain the handle.

• IsSynonym - returns true if the id resolves to the same handle.

• GetSynonyms - returns a list of all bioseq synonyms.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDataLoader
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBioseq_Handle

C++ Toolkit Book The Object Manager

17-13

• GetParentEntry - returns a handle for the parent seq-entry of the bioseq.

• GetTopLevelEntry - returns a handle for the top-level seq-entry.

• GetBioseqCore - returns TBioseqCore, which is CConstRef<CBioseq>.
The bioseq object is guaranteed to have basic information loaded (the list
of seq-ids, bioseq length, type etc.). Some information in the bioseq
(descriptors, annotations, sequence data) may be not loaded yet.

• GetCompleteBioseq - returns the complete bioseq object. Any missing
data will be loaded and put in the bioseq members.

• GetComplexityLevel and GetExactComplexityLevel - allow to find a
parent seq-entry of a specified class (e.g. nuc-prot). The first method is
more flexible since it considers some seq-entry classes as equivalent.

• GetBioseqMolType - returns molecule type of the bioseq.

• GetSeqMap - returns seq-map object for the bioseq.

• GetSeqVector - returns seq-vector with the selected coding and strand.

• GetSequenceView - creates a seq-vector for a part of the bioseq.
Depending on the flags the resulting seq-vector may show all intervals
(merged or not) on the bioseq specified by seq-loc, or all parts of the
bioseq not included in the seq-loc.

• GetSeqMapByLocation - returns seq-map constructed from a seq-loc.
The method uses the same flags as GetSequenceView.

• MapLocation - maps a seq-loc from the bioseq's segment to the bioseq.

Bioseq-set handle
Bioseq-set handle (CBioseq_set_Handle) is a proxy class for bioseq-set objects. Like in Bioseq
handle, most of its methods allow read-only access to the members of CBioseq_set object. Some
other methods are similar to the Bioseq handle's interface.

Object methods

• GetParentEntry - returns a handle for the parent seq-entry of the bioseq.

• GetTopLevelEntry - returns a handle for the top-level seq-entry.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBioseq_set_Handle

C++ Toolkit Book The Object Manager

17-14

• GetBioseq_setCore - returns core data for the bioseq-set. The object is
guaranteed to have basic information loaded. Some information may be
not loaded yet.

• GetCompleteBioseq_set - returns the complete bioseq-set object. Any
missing data will be loaded and put in the bioseq members.

• GetComplexityLevel and GetExactComplexityLevel - allow to find a
parent seq-entry of a specified class (e.g. nuc-prot). The first method is
more flexible since it considers some seq-entry classes as equivalent.

Seq-entry handle
Seq-entry handle (CSeq_entry_Handle) is a proxy class for seq-entry objects. Most of its meth-
ods allow read-only access to the members of Seq-entry object. Other methods may be used to
navigate the seq-entry tree.

Object methods

• GetParentBioseq_set - returns a handle for the parent bioseq-set if any.

• GetParentEntry - returns a handle for the parent seq-entry.

• GetSingleSubEntry - checks that the seq-entry contains a bioseq-set of
just one child seq-entry and returns a handle for this entry, otherwise
throws exception.

• GetTopLevelEntry - returns a handle for the top-level seq-entry.

• GetSeq_entryCore - returns core data for the seq-entry. Some informa-
tion may be not loaded yet.

• GetCompleteSeq_entry - returns the complete seq-entry object. Any
missing data will be loaded and put in the bioseq members.

Seq-annot handle
Seq-annot handle (CSeq_annot_Handle) is a simple proxy for seq-annot objects.

Object methods

• GetParentEntry - returns a handle for the parent seq-entry.

• GetTopLevelEntry - returns a handle for the top-level seq-entry.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_entry_Handle
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_annot_Handle

C++ Toolkit Book The Object Manager

17-15

• GetCompleteSeq_annot - returns the complete seq-annot object. Any
data stubs are resolved and loaded.

Seq-feat handle
Seq-feat handle (CSeq_feat_Handle) is a read-only proxy to seq-feat objects data. It also simpli-
fies and optimizes access to methods of SNP features.

Seq-align handle
Seq-align handle (CSeq_align_Handle) is a read-only proxy to seq-align objects data. Most of its
methods are simply mapped to the CSeq_align methods.

Seq-graph handle
Seq-graph handle (CSeq_graph_Handle) is a read-only proxy to seq-graph objects data. Most of
its methods are simply mapped to the CSeq_graph methods.

Seq-map
Seq-map (CSeqMap) object gives a general description of a biological sequence data: location
and type of each segment without data itself. It provides the overall structure of a bioseq, or can
be constructed from a seq-loc, representing a set of locations rather than a real bioseq. Seq-map
is used mostly together with Seq-map iterator, which enumerates individual segments. Special
flags allow to select types of segments to be shown by the iterator and depth of resolving refer-
ences.

Object methods

• GetLength - returns the length of the whole seq-map.

• GetMol - returns molecule type for real bioseqs.

• begin, Begin, end, End, FindSegment - methods for normal seq-map
iteration (lower case names added for compatibility with STL).

• BeginResolved, FindResolved, EndResolved - force resolving refer-
ences in the seq-map. Optional arguments allow controlling types of
segments to be shown and resolution depth.

• ResolvedRangeIterator - starts iterator over the specified range and
strand only.

• CanResolveRange - checks if necessary data is available to resolve all
segments in the specified range.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_feat_Handle
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_align_Handle
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_graph_Handle
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeqMap

C++ Toolkit Book The Object Manager

17-16

Seq-vector
Seq-vector (CSeqVector) is a convenient representation of sequence data. It uses interface simi-
lar to the STL vector but data retrieval is optimized for better performance on big sequences.
Individual characters may be accessed through operator[], but better performance may be
achieved with seq-vector iterator. Seq-vector can be obtained from a bioseq handle, or con-
structed from a seq-map or seq-loc.

Object methods

• size - returns length of the whole seq-vector.

• begin, end - STL-style methods for iterating over seq-vector.

• operator[] - provides access to individual character at a given position.

• GetSeqData - copy characters from a specified range to a string.

• GetSequenceType, IsProtein, IsNucleotide - check sequence type.

• SetCoding, SetIupacCoding, SetNcbiCoding - control coding used by
seq-vector. These methods allow to select Iupac or Ncbi coding without
checking the exact sequence type - correct coding will be selected by the
seq-vector automatically.

• GetGapChar - returns character used in the current coding to indicate
gaps in the sequence.

• CanGetRange - check if sequence data for the specified range is avail-
able.

• SetRandomizeAmbiguities, SetNoAmbiguities - control randomization
of ambiguities in ncbi2na coding. If set, ambiguities will be represented
with random characters with distribution corresponding to the ambiguity
symbol at each position. Once assigned, the same character will be
returned every time for the same position.

Bioseq iterator
Bioseq iterator (CBioseq_CI) enumerates bioseqs in a given seq-entry. Optional filters may be
used to restrict types of bioseqs to iterate.

Seq-entry iterator
Seq-entry iterator (CSeq_entry_CI) enumerates seq-entries in a given parent seq-entry or a
bioseq-set. Note that the iterator enumerates sub-entries for only one tree level. It does not go
down the tree if it finds a sub-entry of type "set".

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeqVector
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBioseq_CI
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_entry_CI

C++ Toolkit Book The Object Manager

17-17

Seq-descr iterator
Seq-descr iterator (CSeq_descr_CI) enumerates CSeq_descr objects from a Bioseq or Seq-entry
handle. The iterator starts from the specified point in the tree and goes up to the top-level seq-
entry. This provides sets of descriptors more closely related to the Bioseq/Seq-entry requested to
be returned first, followed by descriptors that are more generic. To enumerate individual descrip-
tors CSeqdesc_CI iterator should be used.

Seqdesc iterator
Another type of descriptor iterator is CSeqdesc_CI. It enumerates individual descriptors (CSe-
qdesc) rather than sets of them. Optional flags allow to select type of descriptors to be included
and depth of the search. The iteration starts from the requested seq-entry or bioseq and proceeds
to the top-level seq-entry or stops after going selected number of seq-entries up the tree.

Seq-annot iterator
Seq-annot iterator (CSeq_annot_CI) may be used to enumerate CSeq_annot objects - packs of
annotations (features, graphs, alignments etc.). The iterator can work in two directions: starting
from a bioseq and going up to the top-level seq-entry, or going down the tree from the selected
seq-entry.

Annot iterator
Although returning CSeq_annot objects, CAnnot_CI searches individual features, alignments and
graphs related to the specified bioseq or location. It enumerates all seq-annots containing the
requested annotations. The search parameters may be fine-tuned using SAnnotSelector like in
case of feature, alignment or graph iterator.

SAnnotSelector
SAnnotSelector is a helper class which may be used to fine-tune annotation iterator's settings. It
is used with CAnnot_CI, CFeat_CI, CAlign_CI and CGraph_CI iterators. Below is the brief expla-
nation of the class methods. Some methods have several modifications to simplify the selector
usage. E.g. one can find SetOverlapIntervals() more convenient than SetOverlapType
(SAnnotSelector::eOverlap_Intervals).

• SetAnnotType - selects type of annotations to search for (features, alignments or graphs).
Type-specific iterators set this type automatically.

• SetFeatType - selects type of features to search for. Ignored when used with alignment or
graph iterator.

• SetFeatSubtype - selects feature subtype and corresponding type.

• SetByProduct - sets flag to search features by product rather than by location.

• SetOverlapType - select type of location matching during the search. If overlap type is set
to intervals, the annotation should have at least one interval intersecting with the requested
ranges to be included in the results. If overlap type is set to total range, the annotation will

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDesc_CI
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_descr
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeqdesc_CI
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeqdesc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeqdesc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_annot_CI
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_annot
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_annot
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CAnnot_CI
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SAnnotSelector

C++ Toolkit Book The Object Manager

17-18

be found even if it's location has a gap intersecting with the requested range. The default
value is intervals. Total ranges are calculated for each referenced bioseq individually, even
if an annotation is located on several bioseqs, which are segments of the same parent
sequence.

• SetSortOrder - selects sorting of annotations: normal, reverse or none. The default value
is normal.

• SetResolveMethod - defines method of resolving references in segmented bioseqs.
Default value is TSE, meaning that annotations should only be searched on segments
located in the same top-level seq-entry. Other available options are none (to ignore anno-
tations on segments) and all (to search on all segments regardless of their location).
Resolving all references may produce a huge number of annotations for big bioseqs, this
option should be used with care.

• SetResolveDepth - limits the depth of resolving references in segmented bioseqs. By
default the search depth is not limited (set to kMax_Int).

• SetAdaptiveDepth, SetAdaptiveTrigger - set search depth limit using a trigger type/
subtype. The search stops when an annotation of the trigger type is found on some level.

• SetMaxSize - limits total number of annotations to find.

• SetLimitNone, SetLimitTSE, SetLimitSeqEntry, SetLimitSeqAnnot - limits the search to
a single TSE, seq-entry or seq-annot object.

• SetIdResolvingLoaded, SetIdResolvingIgnore, SetIdResolvingFail - define how the
iterators should behave if a reference in a sequence can not be resolved. IdResolvin-
gLoaded will only try to resolve ids already loaded, IdResolvingIgnore will ignore missing
parts and IdResolvingFail will throw CAnnotException.

• SetNoMapping - prevents the iterator from mapping locations to the top-level bioseq. This
option can dramatically increase iterators' performance when searching annotations on a
segmented bioseq.

Feature iterator
Feature iterator (CFeat_CI) is kind of annotation iterator. It enumerates CSeq_feat objects related
to a bioseq, seq-loc, or contained in a particular seq-entry or seq-annot regardless of the refer-
enced locations. The search parameters may be set using SAnnotSelector (preferred method) or
using constructors with different arguments. The iterator returns CMappedFeat object rather than
CSeq_feat. This allows to access both original feature (e.g. loaded from a database) and
mapped one, with its location adjusted according to the search parameters. Most methods of
CMappedFeat are just proxies for the original feature members and are not listed here.

CMappedFeat methods

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CFeat_CI
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_feat

C++ Toolkit Book The Object Manager

17-19

• GetOriginalFeature - returns the original feature.

• GetSeq_feat_Handle - returns handle for the original feature object.

• GetMappedFeature - returns a copy of the original feature with its loca-
tion/product adjusted according to the search parameters (e.g. id and
ranges changed from a segment to the parent bioseq). The mapped fea-
ture is not created unless requested. This allows to improve the iterator's
performance.

• GetLocation - although present in CSeq_feat class, this method does not
always return the original feature's location, but first checks if the feature
should be mapped, creates the mapped location if necessary and returns
it. To get the unmapped location use GetOriginalFeature().
GetLocation() instead.

• GetAnnot - returns handle for the seq-annot object, containing the origi-
nal feature.

Alignment iterator
Alignment iterator (CAlign_CI) enumerates CSeq_align objects related to the specified bioseq or
seq-loc. It behaves much like CFeat_CI. Operators * and -> return mapped CSeq_align object,
to get the original alignment you can use GetOriginalSeq_align or GetSeq_align_Handle meth-
ods.

Graph iterator.
Graph data iterator (CGraph_CI) enumerates CSeq_graph objects related to a specific bioseq or
seq-loc. It behaves much like CFeat_CI, returning CMappedGraph object which imitates inter-
face of CSeq_graph and has additional methods to access both original and mapped graphs.

Seq-map iterator
Seq-map iterator (CSeqMap_CI) is used to enumerate Seq-map segments. Special flags allow to
select types of segments to be enumerated.

Object methods

• GetPosition - returns start position of the current segment.

• GetLength - returns length of the current segment.

• GetEndPosition - returns end position (exclusive) of the current segment.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CAlign_CI
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_align
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CGraph_CI
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_graph
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeqMap_CI

C++ Toolkit Book The Object Manager

17-20

• GetType - returns type of the current segment. The allowed types are
eSeqGap, eSeqData, eSeqRef, and eSeqEnd.

• GetData - returns sequence data (CSeq_data). The current segment type
must be eSeqData.

• GetRefData - returns sequence data for any segment which can be
resolved to a real sequence. The real position, length and strand of the
data should be checked using other methods.

• GetRefSeqid - returns referenced seq-id for segments of type eSeqRef.

• GetRefPosition - returns start position on the referenced bioseq for seg-
ments of type eSeqRef.

• GetRefEndPosition - returns end position (exclusive) on the referenced
bioseq for segments of type eSeqRef.

• GetRefMinusStrand - returns true if referenced bioseq's strand should be
reversed. If there are several levels of references for the current segment,
the method checks strands on each level.

Seq-vector iterator
Seq-vector iterator (CSeqVector_CI) is used to access individual characters from a Seq-vector. It
has better performance than CSeqVector::operator[] when used for sequential access to the
data.

Object methods

• GetSeqData - copy characters from a specified range to a string.

• GetPos, SetPos - control current position of the iterator.

• GetCoding, SetCoding - control character coding.

• SetRandomizeAmbiguities, SetNoAmbiguities - control randomization
of ambiguities in ncbi2na coding. If set, ambiguities will be represented
with random characters with distribution corresponding to the ambiguity
symbol at each position. Once assigned, the same character will be
returned every time for the same position.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_data
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeqVector_CI

C++ Toolkit Book The Object Manager

17-21

Request history and conflict resolution
There are several points of potential ambiguity:

1. the client request may be incomplete;

2. the data in the database may be ambiguous;

3. the data stored by the Object Manager in the local cache may be out of date (in case the
database has been updated during the client session);

4. the history of requests may create conflicts (when the Object Manager is unable to
decide what exactly is the meaning of the request).

Incomplete Seq-id
Biological sequence id (Seq-id) gives a lot of freedom in defining what sequence the client is
interested in. It can be a Gi - a simple integer assigned to a sequence by the NCBI "ID" database,
which in most cases is unique and univocal (Gi does not change if only annotations are changed),
but is also can be an accession string only (without version number or release specification). It
can specify in what database the sequence data is stored, or this information could be missing.

The Object Manager's interpretation of such requests is kind of arbitrary (yet reasonable, e.g.
only the latest version of a given accession is being chosen). That is, the sequence could proba-
bly be found, but only one sequence, not the list of "matching" ones. At this point the initial
incomplete Seq-id has been resolved into a complete one. That is, the client asked the Scope for
a BioseqHandle providing incomplete Seq-id as the input. Scope resolved it into a specific com-
plete Seq-id and returned a handle. The client may now ask the handle about its Seq-id. The
returned Seq-id differs from the one provided initially by the client.

History of requests
Once the Seq-id has been resolved into a specific Seq-entry, the Object Manager keeps track of
all data requests to this sequence in order to maintain consistency. That is, it is perfectly possible
that few minutes later this same Seq-id could be resolved into another Seq-entry (the data in the
database may change). Still, from the client point of view, as long as this is the same session,
nothing should happen - the data should not change.

By "session" we mean here the same Scope of resolution. That is, as long as the data are
requested through the same Scope, it is consistent. In another Scope the data could potentially
be different. Another way to make the Scope forget about previous requests is calling its
ResetHistory method.

Ambiguous requests
It is possible that there are several Seq-entries which contain requested information. In this case
the processing depends on what is actually requested: sequence data or sequence annotations.
The Bioseq may be taken from only one source, while annotations - from several Seq-entries.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQLOC.HTML

C++ Toolkit Book The Object Manager

17-22

Request for Bioseq
Scopes use several rules when searching for the best Bioseq for each requested Seq-id. These
rules are listed below in the order they are applied:

1. Check if the requested Seq-id has been already resolved to a Seq-entry whithin this
scope. This guarantees the same Bioseq will be returned for the same Seq-id.

2. If the Seq-id requested is not resolved yet, request it from Data sources starting from the
highest priority sources. Do not check lower-priority sources if something was found in
the higher-priority ones.

3. If more than one Data sources of the same priority contain the Bioseq or there is one
Data source with several versions of the same Seq-id, ask the Data source to resolve the
conflict. The Data source may take into account if the Bioseq is most recent or not, what
Seq-entries has been already used by the Scope (preferred Seq-entries) etc.

Request for annotations
Annotation iterators start with examining all Data Sources in the Scope in order to find all top-
level seq-entries, which contain annotations pointing to the given Seq-id. The rules for filtering
annotations are slightly different than for resolving Bioseqs. First of all, the scope resolves the
requested seq-id and takes all annotations related to the seq-id from its top-level seq-entry. TSEs
containing both sequence and annotations with the same seq-id are ignored, since any other
Bioseq with the same id is considered an old version of the resolved one. If there are external
annotations in TSEs not containing a Bioseq with the requested seq-id, they are also collected.

How to use it

1. Start working with the Object Manager.

2. Add externally created top-level Seq-entry to the Scope.

3. Add a data loader to the Scope.

4. Start working with a Bioseq.

5. Access sequence data.

6. Enumerate sequence descriptions.

7. Enumerate sequence annotations.

Start working with the Object Manager
Include the necessary headers:
#include <objmgr/object_manager.hpp>
#include <objmgr/scope.hpp>
#include <objmgr/bioseq_handle.hpp>
#include <objmgr/seq_vector.hpp>

C++ Toolkit Book The Object Manager

17-23

#include <objmgr/desc_ci.hpp>
#include <objmgr/feat_ci.hpp>
#include <objmgr/align_ci.hpp>
#include <objmgr/graph_ci.hpp>

Request an instance of the CObjectManager and store as CRef:
CRef<CObjectManager> obj_mgr = CObjectManager::GetInstance();

Create a CScope. The Scope may be created as an object on the stack, or on the heap:
CRef<CScope> scope1 = new CScope(*obj_mgr);

CScope scope2(*obj_mgr);

Add externally created top-level Seq-entry to the Scope.
Once there is a Seq-entry created somehow, it can be added to the Scope using the following
code:
CRef<CSeq_entry> entry(new CSeq_entry);
... // Populate or load the Seq-entry in some way
scope.AddTopLevelSeqEntry(*entry);

Add a data loader to the Scope.
Data loader is designed to be a replaceable object. There can be a variety of data loaders, each
of which would load data from different databases, flat files, etc. Data loader must be registered
with the Object Manager. One distinguishes them later by their names. One of the most popular
data loaders is the one that loads data from the GenBank - CGBDataLoader. Each loader has at
least one RegisterInObjectManager static method, the first argument is usually a reference to
the Object Manager:
#include <objtools/data_loaders/genbank/gbloader.hpp>
...
CGBDataLoader::RegisterInObjectManager(*obj_mgr);

A data loader may be registered as default or non-default loader. GenBank loader is automat-
ically registered as default if you don't override it explicitly. For other loaders you may need to
specify additional arguments to set their priority or make them default (usually this can be done
through the last two arguments of the RegisterInObjectManager method). A Scope can request
a data loader from the Object Manager one at a time - by name. In this case you will need to
know the loader's name. You can get it from the loader using its GetName method, or if you don't
have a loader, you can use static GetLoaderNameFromArgs method as in the following example
(in this case there were no explicit arguments):

scope.AddDataLoader(CGBDataLoader::GetLoaderNameFromArgs());

More convenient way of adding Data loaders to a Scope works if you have registered the
loaders as default:

scope.AddDefaults();

C++ Toolkit Book The Object Manager

17-24

Start working with a Bioseq.
In order to be able to access a Bioseq, one has to obtain a Bioseq handle from the Scope, based
on a known Seq_id. It's always a good idea to check if the operation was successful:
CSeq_id seq_id;seq_id.SetGi(3);
CBioseq_Handle handle = scope.GetBioseqHandle(seq_id);
if (!handle) {
 ... // Failed to get the bioseq handle
}

Access sequence data.
The access to the sequence data is provided through the Seq- vector object, which can be
obtainedfrom a Bioseq handle. The vector may be used together with Seq-vector iterator to enu-
merate the sequence characters:
CSeqVector seq_vec = handle.GetSeqVector(CBioseq_Handle::eCoding_Iupac);
for (CSeqVector_CI it = seq_vec.begin(); it; ++it) {
 NcbiCout << *it;
}

Seq-vector class provides much more than the plain data storage. It rather "knows where to
find" the data. As a result of a query, it may initiate reference resolution process, send requests to
the source database for more data etc.

There is another useful object, which describes sequence data - Sequence map. It is a collec-
tion of segments, which describe sequence parts in general - location and type only, without
providing any real data. To obtain Sequence map from a Bioseq handle:

CConstRef<CSeqMap> seqmap(&handle.GetSeqMap());

It is possible then to enumerate all the segments in the map asking their type, length or posi-
tion. Note that in this example the iterator is obtained using begin() method and will enumerate
only top level segments of the Seq-map:

int len = 0;
for (CSeqMap::const_iterator seg = seqmap->begin() ; seg; ++seg) {
 switch (seg.GetType()) {
 case CSeqMap::eSeqData:
 len += seg.GetLength();
 break;
 case CSeqMap::eSeqRef:
 len += seg.GetLength();
 break;
 case CSeqMap::eSeqGap:
 len += seg.GetLength();
 break;
 default:
 break;
 }
}

C++ Toolkit Book The Object Manager

17-25

Enumerate sequence descriptions.
Description iterator may be initialized with a Bioseq handle or Seq-entry handle. It makes it possi-
ble to enumerate all CSeqdesc objects the Bioseq or the Seq-entry refers to:
for (CSeqdesc_CI desc_it(handle); desc_it; ++desc_it) {
 const CSeqdesc& desc = *desc_it;
 ... // your code here
}

Another type of descriptor iterator iterates over sets of descriptors rather than individual
objects:

for (CSeq_descr_CI descr_it(handle); descr_it; ++descr_it) {
 const CSeq_descr& descr = *descr_it;
 ... // your code here
}

Enumerate sequence annotations.
Annotation iterators may be used to enumerate annotations (features, alignments and graphs)
related to a Bioseq or a Seq-loc. They are very flexible and be fine-tuned through Annot-selector
structure:
// Search all TSEs in the Scope for gene features
SAnnotSelector sel;
sel.SetFeatType(CSeqFeatData::e_Gene);
CFeat_CI feat_it(handle, 0, 0, sel); // both start and stop are 0 - iterate the whole
bioseq
for (; feat_it; ++feat_it) {
 const CSeq_loc& loc = feat_it->GetLocation();
 ... // your code here
}

The next example shows a slightly more complicated settings for the feature iterator. The
selector forces resolution of all references, both near (to Bioseqs located in the same TSE) and
far. The features will be collected from all segments resolved. Since this may result in loading a
lot of external Bioseqs, the selector is set to restrict the depth of references to 2 levels:

SAnnotSelector sel;
sel.SetFeatType(CSeqFeatData::e_Gene)
 .SetReaolveAll()
 .SetResolveDepth(2);
CFeat_CI feat_it(handle, 0, 0, sel);
for (; feat_it; ++feat_it) {
 const CSeq_loc& loc = feat_it->GetLocation();
 ... // your code here
}

Usage of alignment and graph iterators is similar to the feature iterator:
CAlign_CI align_it(handle, 0, 0);

...
CGraph_CI graph_it(handle, 0, 0);
...

C++ Toolkit Book The Object Manager

17-26

All the above examples iterate annotations in a continuous interval on a Bioseq. To specify
more complicated locations a Seq-loc may be used instead of the Bioseq handle. The Seq-loc
may even reference different ranges on several Bioseqs:

CSeq_loc loc;
CSeq_loc_mix& mix = loc.SetMix();
... // fill the mixed location
for (CFeat_CI feat_it(scope, loc); feat_it; ++feat_it) {
 const CSeq_loc& feat_loc = feat_it->GetLocation();
 ... // your code here
}

Educational Exercises

Setup the framework for the C++ Object Manager learning task
Starting point

To jump-start your first project utilizing the new C++ Object Manager in the C++ Toolkit frame-
work on a UNIX platform, we suggest using new_project.sh shell script, which creates a sample
application and a makefile:

1. Create a new project called task in the folder task using new_project.sh shell script

(this will create the folder, the source file and the makefile):
$NCBI/c++/scripts/new_project.sh task app/objmgr

2. Build the sample project and run the application:
cd task
make -f Makefile.task_app
./task -gi 333

The output should look like this:
First ID: emb|CAA23443.1|
Sequence: length=263, data=MARFLGLCTW
of descriptions: 6
of features:
 [whole] Any: 2
 [whole] Genes: 0
 [0..9] Any: 2
 [0..9, TSE-only] Any: 2
of alignments:
 [whole] Any: 0
Done

3. Now you can go ahead and convert the sample code in the task.cpp into the code that
performs your learning task.

To create a new project on Windows new_project.wsf can be used. The script usage is
described in Toolkit configuration chapter and is very similar to the usage of new_project.sh.

C++ Toolkit Book The Object Manager

17-27

How to convert the test application into CGI one?
In order to convert your application into CGI one:

1. Create copy of the source (task.cpp) and makefile (Makefile.task_app)
cp task.cpp task_cgi.cpp
cp Makefile.task_app Makefile.task_cgiapp

2. Edit the makefile for the CGI application (Makefile.task_cgiapp): change application
name, name of the source file, add cgi libraries:
APP = task.cgiSRC = task_cgiLIB = xobjmgr id1 seqset $(SEQ_LIBS) pub medline bib-
lio general \
 xser xhtml xcgi xutil xconnect xncbi
LIBS = $(NCBI_C_LIBPATH) $(NCBI_C_ncbi) $(FASTCGI_LIBS) $(NETWORK_LIBS)
$(ORIG_LIBS)

3. Build the project (at this time it is not a CGI application yet):
make -f Makefile.task_cgiapp

4. Convert task_cgi.cpp into a CGI application.

Convert CGI application into Fast-CGI one
In the LIB=... section of Makefile.task_cgiapp, just replace xcgi library by xfcgi:
LIB = xobjmgr id1 seqset $(SEQ_LIBS) pub medline biblio general \
 xser xhtml xfcgi xutil xconnect xncbi

Task Description
We have compiled here a list of teaching examples to help you start working with the C++ Object
Manager. Completing them, getting your comments and investigating the problems encountered
would let us give warnings of issues to deal with in the nearest future, better understand what
modifications should be made to this software system.

The main idea here is to build one task on the top of another, in growing level of complexity:

1. having a Seq-id (GI), get the Bioseq;

2. print the Bioseq's title descriptor;

3. print the Bioseq's length;

4. dump the Seg-map structure;

5. print the total number of cd-region features on the Bioseq and their locations;

6. calculate percentage of 'G' and 'C' symbols in the whole sequence;

7. calculate percentage of 'G' and 'C' symbols within cd-regions;

8. calculate percentage of 'G' and 'C' symbols for regions outside any cd-region feature;

9. convert the application into a CGI one;

C++ Toolkit Book The Object Manager

17-28

10. convert the application into a FCGI one.

Test Bioseqs
Below is the list of example sequences to use with the C++ toolkit training course. It starts with
one Teaching Example that has one genomic nucleic acid sequence and one protein with a cd-
region. Following that is the list of Test Examples. Once the code is functioning on the Teaching
Example, we suggest running it through these. They include a bunch of different conditions: short
sequence with one cd-region, longer with 6 cd-regions, a protein record (this is an error, and code
should recover), segmented sequence, 8 megabase genomic contig, a popset member, and a
draft sequence with no cd-regions.

Teaching example
IDs and description of the sequence to be used as a simple teaching example is shown in Table
1.

Table 1. Teaching Example: Sequence

Accession Version Gi Definition

AJ438945 AJ438945.1 19584253 Homo sapiens SLC16A1
gene...

The application should produce the following results for the above Bioseq:
ID: emb|AJ438945.1|HSA438945 + gi|19584253

Homo sapiens SLC16A1 gene for monocarboxylate transporter isoform 1, exons 2-5
Sequence length: 17312
Sequence map
 Segment: pos=0, length=17312, type=DATA
Total: 40.29%
 cdr0: 46.4405%
Cdreg: 46.4405%
Non-Cdreg: 39.7052%

Test examples
More complicated test Bioseqs are listed in Table 2.

Table 2. Test Examples: Sequences

Accession Version Gi Definition

J01066 J01066.1 156787 D.melanogaster alcohol dehy-
drogenase gene, complete
cds

U01317 U01317.1 455025 Human beta globin region on
chromosome 11.

Q08345 Q08345 729008 Epithelial discoidin domain
receptor 1 precursor...

C++ Toolkit Book The Object Manager

17-29

Accession Version Gi Definition

AH01100 AH011004.1 19550966 Mus musculus light ear protein
(le) gene, complete cds

NT_017168 NT_017168.8 18565551 Homo sapiens chromosome 7
working draft sequence
segment

AF022257 AF022257.1 2415435 HIV-1 patient ACH0039, clone
3918C6 from The Nether-
lands...

AC116052 AC116052.1 19697559 Mus musculus chromosome
UNK clone

Correct Results
Below are shown the correct results for each of the test Bioseqs. You can use them as reference
to make sure your application works correctly.

ID: gb|J01066.1|DROADH + gi|156787
D.melanogaster alcohol dehydrogenase gene, complete cds.
Sequence length: 2126
Sequence map
 Segment: pos=0, length=2126, type=DATA
Total: 45.8137%
 cdr0: 57.847%
Cdreg: 57.847%
Non-Cdreg: 38.9668%
ID: gb|U01317.1|HUMHBB + gi|455025
Human beta globin region on chromosome 11.
Sequence length: 73308
Sequence map
 Segment: pos=0, length=73308, type=DATA
Total: 39.465%
 cdr0: 52.9279%
 cdr1: 53.6036%
 cdr2: 53.6036%
 cdr3: 49.2099%
 cdr4: 54.5045%
 cdr5: 56.3063%
 cdr6: 56.7568%
Cdreg: 53.2811%
Non-Cdreg: 39.0228%
ID: emb|AJ293577.1|HSA293577 + gi|14971422
Homo sapiens partial MOCS1 gene, exon 1 and joined CDS
Sequence length: 913
Sequence map
 Segment: pos=0, length=913, type=DATA
Total: 54.655%
 cdr0: 62.8%
Cdreg: 62.8%
Non-Cdreg: 51.5837%

C++ Toolkit Book The Object Manager

17-30

ID: gb|AH011004.1|SEG_Y043402S + gi|19550966
Mus musculus light ear protein (le) gene, complete cds.
Sequence length: 5571
Sequence map
 Segment: pos=0, length=255, type=DATA
 Segment: pos=255, length=0, type=GAP
 Segment: pos=255, length=306, type=DATA
 Segment: pos=561, length=0, type=GAP
 Segment: pos=561, length=309, type=DATA
 Segment: pos=870, length=0, type=GAP
 Segment: pos=870, length=339, type=DATA
 Segment: pos=1209, length=0, type=GAP
 Segment: pos=1209, length=404, type=DATA
 Segment: pos=1613, length=0, type=GAP
 Segment: pos=1613, length=349, type=DATA
 Segment: pos=1962, length=0, type=GAP
 Segment: pos=1962, length=361, type=DATA
 Segment: pos=2323, length=0, type=GAP
 Segment: pos=2323, length=369, type=DATA
 Segment: pos=2692, length=0, type=GAP
 Segment: pos=2692, length=347, type=DATA
 Segment: pos=3039, length=0, type=GAP
 Segment: pos=3039, length=1066, type=DATA
 Segment: pos=4105, length=0, type=GAP
 Segment: pos=4105, length=465, type=DATA
 Segment: pos=4570, length=0, type=GAP
 Segment: pos=4570, length=417, type=DATA
 Segment: pos=4987, length=0, type=GAP
 Segment: pos=4987, length=584, type=DATA
Total: 57.2305%
 cdr0: 59.5734%
Cdreg: 59.5734%
Non-Cdreg: 55.8899%
ID: gb|AH011004.1|SEG_Y043402S + gi|19550966
Mus musculus light ear protein (le) gene, complete cds.
Sequence length: 5571
Sequence map
 Segment: pos=0, length=255, type=DATA
 Segment: pos=255, length=0, type=GAP
 Segment: pos=255, length=306, type=DATA
 Segment: pos=561, length=0, type=GAP
 Segment: pos=561, length=309, type=DATA
 Segment: pos=870, length=0, type=GAP
 Segment: pos=870, length=339, type=DATA
 Segment: pos=1209, length=0, type=GAP
 Segment: pos=1209, length=404, type=DATA
 Segment: pos=1613, length=0, type=GAP
 Segment: pos=1613, length=349, type=DATA
 Segment: pos=1962, length=0, type=GAP
 Segment: pos=1962, length=361, type=DATA
 Segment: pos=2323, length=0, type=GAP
 Segment: pos=2323, length=369, type=DATA
 Segment: pos=2692, length=0, type=GAP

C++ Toolkit Book The Object Manager

17-31

 Segment: pos=2692, length=347, type=DATA
 Segment: pos=3039, length=0, type=GAP
 Segment: pos=3039, length=1066, type=DATA
 Segment: pos=4105, length=0, type=GAP
 Segment: pos=4105, length=465, type=DATA
 Segment: pos=4570, length=0, type=GAP
 Segment: pos=4570, length=417, type=DATA
 Segment: pos=4987, length=0, type=GAP
 Segment: pos=4987, length=584, type=DATA
Total: 57.2305%
 cdr0: 59.5734%
Cdreg: 59.5734%
Non-Cdreg: 55.8899%
ID: gb|AF022257.1|AF022257 + gi|2415435
HIV-1 patient ACH0039, clone 3918C6 from The Netherlands, envelope glycoprotein V3 region
(env) gene, partial cds.
Sequence length: 388
Sequence map
 Segment: pos=0, length=388, type=DATA
Total: 31.9588%
 cdr0: 31.9588%
Cdreg: 31.9588%
Non-Cdreg: 0%
ID: ref|NT_017168.8|Hs7_17324 + gi|18565551
Homo sapiens chromosome 7 working draft sequence segment
Sequence length: 8470605
Sequence map
 Segment: pos=0, length=29884, type=DATA
 Segment: pos=29884, length=100, type=GAP
 Segment: pos=29984, length=20739, type=DATA
 Segment: pos=50723, length=100, type=GAP
 Segment: pos=50823, length=157624, type=DATA
 Segment: pos=208447, length=29098, type=DATA
 Segment: pos=237545, length=115321, type=DATA
 Segment: pos=352866, length=25743, type=DATA
 Segment: pos=378609, length=116266, type=DATA
 Segment: pos=494875, length=144935, type=DATA
 Segment: pos=639810, length=108678, type=DATA
 Segment: pos=748488, length=102398, type=DATA
 Segment: pos=850886, length=149564, type=DATA
 Segment: pos=1000450, length=120030, type=DATA
 Segment: pos=1120480, length=89411, type=DATA
 Segment: pos=1209891, length=51161, type=DATA
 Segment: pos=1261052, length=131072, type=DATA
 Segment: pos=1392124, length=118395, type=DATA
 Segment: pos=1510519, length=70119, type=DATA
 Segment: pos=1580638, length=59919, type=DATA
 Segment: pos=1640557, length=131072, type=DATA
 Segment: pos=1771629, length=41711, type=DATA
 Segment: pos=1813340, length=131072, type=DATA
 Segment: pos=1944412, length=56095, type=DATA
 Segment: pos=2000507, length=93704, type=DATA
 Segment: pos=2094211, length=82061, type=DATA

C++ Toolkit Book The Object Manager

17-32

 Segment: pos=2176272, length=73699, type=DATA
 Segment: pos=2249971, length=148994, type=DATA
 Segment: pos=2398965, length=37272, type=DATA
 Segment: pos=2436237, length=96425, type=DATA
 Segment: pos=2532662, length=142196, type=DATA
 Segment: pos=2674858, length=58905, type=DATA
 Segment: pos=2733763, length=94760, type=DATA
 Segment: pos=2828523, length=110194, type=DATA
 Segment: pos=2938717, length=84638, type=DATA
 Segment: pos=3023355, length=94120, type=DATA
 Segment: pos=3117475, length=46219, type=DATA
 Segment: pos=3163694, length=7249, type=DATA
 Segment: pos=3170943, length=118946, type=DATA
 Segment: pos=3289889, length=127808, type=DATA
 Segment: pos=3417697, length=51783, type=DATA
 Segment: pos=3469480, length=127727, type=DATA
 Segment: pos=3597207, length=76631, type=DATA
 Segment: pos=3673838, length=81832, type=DATA
 Segment: pos=3755670, length=21142, type=DATA
 Segment: pos=3776812, length=156640, type=DATA
 Segment: pos=3933452, length=117754, type=DATA
 Segment: pos=4051206, length=107098, type=DATA
 Segment: pos=4158304, length=15499, type=DATA
 Segment: pos=4173803, length=156199, type=DATA
 Segment: pos=4330002, length=89478, type=DATA
 Segment: pos=4419480, length=156014, type=DATA
 Segment: pos=4575494, length=105047, type=DATA
 Segment: pos=4680541, length=120711, type=DATA
 Segment: pos=4801252, length=119796, type=DATA
 Segment: pos=4921048, length=35711, type=DATA
 Segment: pos=4956759, length=131072, type=DATA
 Segment: pos=5087831, length=1747, type=DATA
 Segment: pos=5089578, length=38864, type=DATA
 Segment: pos=5128442, length=131072, type=DATA
 Segment: pos=5259514, length=97493, type=DATA
 Segment: pos=5357007, length=125390, type=DATA
 Segment: pos=5482397, length=96758, type=DATA
 Segment: pos=5579155, length=1822, type=DATA
 Segment: pos=5580977, length=144039, type=DATA
 Segment: pos=5725016, length=58445, type=DATA
 Segment: pos=5783461, length=158094, type=DATA
 Segment: pos=5941555, length=4191, type=DATA
 Segment: pos=5945746, length=143965, type=DATA
 Segment: pos=6089711, length=107230, type=DATA
 Segment: pos=6196941, length=158337, type=DATA
 Segment: pos=6355278, length=25906, type=DATA
 Segment: pos=6381184, length=71810, type=DATA
 Segment: pos=6452994, length=118113, type=DATA
 Segment: pos=6571107, length=118134, type=DATA
 Segment: pos=6689241, length=92669, type=DATA
 Segment: pos=6781910, length=123131, type=DATA
 Segment: pos=6905041, length=136624, type=DATA
 Segment: pos=7041665, length=177180, type=DATA

C++ Toolkit Book The Object Manager

17-33

 Segment: pos=7218845, length=98272, type=DATA
 Segment: pos=7317117, length=22979, type=DATA
 Segment: pos=7340096, length=123747, type=DATA
 Segment: pos=7463843, length=13134, type=DATA
 Segment: pos=7476977, length=156146, type=DATA
 Segment: pos=7633123, length=59501, type=DATA
 Segment: pos=7692624, length=107689, type=DATA
 Segment: pos=7800313, length=29779, type=DATA
 Segment: pos=7830092, length=135950, type=DATA
 Segment: pos=7966042, length=71035, type=DATA
 Segment: pos=8037077, length=129637, type=DATA
 Segment: pos=8166714, length=80331, type=DATA
 Segment: pos=8247045, length=49125, type=DATA
 Segment: pos=8296170, length=131072, type=DATA
 Segment: pos=8427242, length=25426, type=DATA
 Segment: pos=8452668, length=100, type=GAP
 Segment: pos=8452768, length=16014, type=DATA
 Segment: pos=8468782, length=100, type=GAP
 Segment: pos=8468882, length=1723, type=DATA
Total: 37.2259%
 cdr0: 39.6135%
 cdr1: 38.9474%
 cdr2: 57.362%
 cdr3: 59.144%
 cdr4: 45.4338%
 cdr5: 37.6812%
 cdr6: 58.9856%
 cdr7: 61.1408%
 cdr8: 51.2472%
 cdr9: 44.2105%
 cdr10: 49.1071%
 cdr11: 43.6508%
 cdr12: 38.3754%
 cdr13: 39.1892%
 cdr14: 42.2222%
 cdr15: 49.5763%
 cdr16: 44.4034%
 cdr17: 42.9907%
 cdr18: 47.619%
 cdr19: 47.3684%
 cdr20: 47.973%
 cdr21: 38.6544%
 cdr22: 45.3052%
 cdr23: 37.7115%
 cdr24: 36.1331%
 cdr25: 61.4583%
 cdr26: 51.9878%
 cdr27: 47.6667%
 cdr28: 45.3608%
 cdr29: 38.7387%
 cdr30: 37.415%
 cdr31: 40.5405%
 cdr32: 41.1819%

C++ Toolkit Book The Object Manager

17-34

 cdr33: 42.6791%
 cdr34: 43.7352%
 cdr35: 44.9235%
 cdr36: 38.218%
 cdr37: 34.4928%
 cdr38: 44.3137%
 cdr39: 37.9734%
 cdr40: 37.0717%
 cdr41: 48.6772%
 cdr42: 38.25%
 cdr43: 48.8701%
 cdr44: 46.201%
 cdr45: 46.7803%
 cdr46: 55.8405%
 cdr47: 43.672%
 cdr48: 50.3623%
 cdr49: 65.4835%
 cdr50: 52.6807%
 cdr51: 45.7447%
 cdr52: 53.7037%
 cdr53: 49.6599%
 cdr54: 38.5739%
 cdr55: 63.3772%
 cdr56: 37.6274%
 cdr57: 38.0952%
 cdr58: 39.6352%
 cdr59: 39.6078%
 cdr60: 58.4795%
 cdr61: 49.4987%
 cdr62: 47.0968%
 cdr63: 45.0617%
 cdr64: 41.5133%
 cdr65: 40.2516%
 cdr66: 39.6208%
 cdr67: 40.4412%
 cdr68: 43.0199%
 cdr69: 40.5512%
 cdr70: 54.7325%
 cdr71: 45.3034%
 cdr72: 55.6634%
 cdr73: 43.7107%
 cdr74: 45.098%
 cdr75: 43.8406%
 cdr76: 49.4137%
 cdr77: 44.7006%
 cdr78: 44.6899%
 cdr79: 56.4151%
 cdr80: 36.1975%
 cdr81: 34.8238%
 cdr82: 38.5447%
 cdr83: 44.0451%
 cdr84: 45.6684%
 cdr85: 45.1696%

C++ Toolkit Book The Object Manager

17-35

 cdr86: 40.9462%
 cdr87: 56.044%
 cdr88: 46.2366%
 cdr89: 41.1765%
 cdr90: 42.9698%
 cdr91: 47.8261%
 cdr92: 43.2234%
 cdr93: 49.7849%
 cdr94: 43.3755%
 cdr95: 51.2149%
Cdreg: 44.3172%
Non-Cdreg: 37.1818%
ID: gnl|WUGSC|RP23-291E18 + gb|AC116052.1| + gi|19697559
[No title]
Sequence length: 18561
Sequence map
 Segment: pos=0, length=1082, type=DATA
 Segment: pos=1082, length=100, type=GAP
 Segment: pos=1182, length=1086, type=DATA
 Segment: pos=2268, length=100, type=GAP
 Segment: pos=2368, length=1096, type=DATA
 Segment: pos=3464, length=100, type=GAP
 Segment: pos=3564, length=1462, type=DATA
 Segment: pos=5026, length=100, type=GAP
 Segment: pos=5126, length=1217, type=DATA
 Segment: pos=6343, length=100, type=GAP
 Segment: pos=6443, length=1450, type=DATA
 Segment: pos=7893, length=100, type=GAP
 Segment: pos=7993, length=1086, type=DATA
 Segment: pos=9079, length=100, type=GAP
 Segment: pos=9179, length=1127, type=DATA
 Segment: pos=10306, length=100, type=GAP
 Segment: pos=10406, length=1145, type=DATA
 Segment: pos=11551, length=100, type=GAP
 Segment: pos=11651, length=1257, type=DATA
 Segment: pos=12908, length=100, type=GAP
 Segment: pos=13008, length=1024, type=DATA
 Segment: pos=14032, length=100, type=GAP
 Segment: pos=14132, length=1600, type=DATA
 Segment: pos=15732, length=100, type=GAP
 Segment: pos=15832, length=2729, type=DATA
Total: 43.9253%
No coding regions found
ID: sp|Q08345|DDR1_HUMAN + gi|729008
Epithelial discoidin domain receptor 1 precursor (Tyrosine kinase DDR) (Discoidin receptor
tyrosine kinase) (Tyrosine-protein kinase CAK) (Cell adhesion kinase) (TRK E) (Protein-
tyrosine kinase RTK 6) (CD167a antigen) (HGK2).
Sequence length: 913
Sequence map
 Segment: pos=0, length=913, type=DATA
Not a DNA

C++ Toolkit Book The Object Manager

17-36

Common problems

1. How to construct Seq_id by accession?

2. How to use CSeqMap?

3. What is the format of data CSeqVector returns?

4. What to pay attention to when processing cd-regions?

How to construct Seq_id by accession?
CSeq_id class has constructor, accepting a string, which may contain a Bioseq accession, or
accession and version separated with dot. If no version is provided, the Object Manager will try to
find and fetch the latest one.

How to use CSeqMap?
There are two methods in CBioseq_Handle, which return CSeqMap object:
const CSeqMap& GetSeqMap(void) const;
const CSeqMap& GetResolvedSeqMap(void) const;

What is the difference? The point is that a sequence can refer to other sequences, which in
turn to others etc. etc. Object Manager does not resolve this references until a client needs it. So,
the contents of SeqMap object returned by GetSeqMap depends on the history of previous calls.
On the other hand, GetResolvedSeqMap returns completely resolved map, that is map, which
does not contain references - only either data or gaps.

What is the format of data CSeqVector returns?
GetSeqVector method of CBioseq_Handle has optional argument to select data coding. One of
the possible values for this argument is CBioseq_Handle::eCoding_Iupac. It forces the resulting
Seq-vector to convert data to printable characters - either Iupac-na or Iupac-aa, depending on the
sequence type. Gaps in the sequence are coded with special character, which can be received
using CSeqVector::GetGapChar, for nucleotides in Iupac coding it will be "N" character. Note,
that when calculating the percentage of "G"/"C" in a sequence you need to ignore gaps.

What to pay attention to when processing cd-regions?
When looking for cd-regions on a sequence, you get a set of features, which locations describe
their position on the sequence. Please note, that these locations may, and do overlap, which
makes calculating percentage of "G"/"C" in the cd-regions much more difficult. To simplify this
part of the task you can create a Seq-vector showing only a given location or all ranges, not
included in the location - see CBioseq_Handle::GetSequenceView() method description. Since
getting such Seq-vector requires a single Seq-loc, you will need to collect all cd-region locations
into one Seq-loc of type mix.

